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The equations of motion of a one-dimensional lattice of mass points connected by nonlinear springs 
are set forth and compared with the equatrons of the corresponding continuum. A permanent regime for 
the damped lattice is obtained by series approximation and shown to agree with that of the continuum. 
A higher approximation leads to a permanent regime profile for the undamped lattice which oscillates 
steadily after shock arrival. This is shown to be in qual itative accord with the results of numerical integra­
tions of the transient problem. However, comparison of periods of steady oscillation with those obtained 
in the transient problem indicate that the series approximation to the permanent regime is quantitatively 
unsatisfactory, though qualitatively correct. Scaling of the problem with a parameter lila is noted, where 
711 is steady particle velocity behind the shock and a is a parameter of nonlinearity. 

1. INTRODUCTION 

Considerable attention has been given to the dis­
cussion of steady shock-compression profiles in gases. l 

Much less work has been done on the analogous problem 
in solids, partly because a satisfactory microscopic 
model of a solid is not available, partly because the 
mathematics of nonlinear lattices is more formidable 
than that of random atomic assemblies, and partly 
because interest in shock waves in solids has generally 
tended to lag behind that in gases. Band2 has discussed 
in general terms the steady profile problem. Bland3 has 
obtained explicit profiles in a continuum for particular 
assumptions about the constitutive relations. These 
efforts are based principally upon continuum models of 
solids and require, as in gases, existence of time­
dependent forces for definition of shock profiles. 
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When lattice models of solids are being considered, 
the processes for introducing dissipative mechanisms 
are less straightforward than for a continuum, since 
dissipation is now to be described in terms of irreversible 
relative motions of atoms which form the lattice or of 
their constituents. Anderson4 has obtained steady 
profiles in a one-dimensional lattice with nonlinear 
forces by introducing dashpots in parallel with springs 
connecting atoms. It is shown in Sec. III of this paper 
that such a model leads to a smooth, non-oscillatory 
shock transition between two uniform states and that 
the transition is the analogue of that which occurs in 
the continuum, provided a certain expansion is properly 
truncated. 

Numerical solutions of transient shock wave problems 
in lattices without dissipation have shown that even in 
such cases the shock profile has finite rise time and is 
oscillatory but not steady. The amplitude of oscillations 
behind the shock front decays with the passage of time 

f G. D. Anderson, Ph.D. thesis, Washington State University 
Pullman, Washington, 1964. 
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FIG. 1. Transient shock profiles from numerical integrations 
for semi-infinite lattice driven by step change in velocity: Cal 
30 particles from driven end, Cb) 90 particles from driven end. 

because the lattice is dispersive." ·7 Some typical results 
of such numerical integrations are shown in Fig. 1. 
Profiles of the kind shown there are disturbing for two 
reasons: (i) they are not steady, and all our experience 
in the continuum, which should be a limit of the lattice, 
indicates that steady profiles do exist, and (ii) the one 
nonlinear lattice problem which can be solved exactly, 
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FIG. 2. Velocity profile for shock in a system of beads sliding 
on a wire: (a) bead positions and shock front at a particular 
time, (h) permanent regime profile for each bead. 
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viz. the sliding of perfectly elastic beads on a wire, as 
in Fig. 2, has each particle oscillating indefinitely with 
constant amplitude after the shock wave has passed. 
Such behavior constitutes, in the present context, a 
steady profile. A detailed examination of the more 
general problem of a one-dimensional lattice with 
nearest neighbor interaction and without dissipation is 
undertaken in Sec. IV. The mathematical problem 
posed IS unusual, but an approximate penn anent 
regime solution is found which is in harmony with the 
results shown in Figs. 1 and 2, though some disagree­
ments between this solution and the transient case 
still exist . 

II. EQUATIONS OF MOTION 

The lattice model is illustrated in Fig. 3, including 
dissipative dashpots, as introduced by Anderson. The 
entire lattice is generated by translation of a single 
mass-spring-dashpot element, and mass points are 
constrained to move in the direction of the lattice. The 
separation between undisturbed masses is Xo. The sign 
convention used in describing forces is shown in Fig. 3 . 
rt is chosen opposite from that normally used because 
these forces will be compared with pressures, not stresses, 

N-2 ..... 
''III'''' 

N- I FN_1,N N FN,N+I N+ I 
...~ _ . ...<11.- ... ~ N+2 

...<II .. 

R j;/----'--j R 1*---'--

FIG. 3. Lattice model with damping. 

in the continuum case. With this convention the force, 
FN •N+1, exerted on mass N by N+1 is negative when 
the spring connecting Nand N + 1 is stretched beyond 
its equilibrium position. We assume the force to be 
nonlinear with parabolic form: 

FN ,N+l= - (SN+l- SN) +a(SN+l- SN)2. (1) 

Dimensionless variables are used here and III the 
equations following. The relative velocity of the two 
particles is assumed to generate a linear damping force: 

GN.N+1=-1/(SN+l'-SN'), (2 ) 

where '=d/ dT and T is a dimensionless time. 
Combining Eqs. (1) and (2) with similar forces due to 
motion of the N -1 particle leads to an equation of 
motion: 

(3) 

In order to pass to the continuum limit for uniaxial 
strain, we suppose that space is filled with parallel 
lattices like the one shown, one per unit area, and that 
Xo = N D.Xo IS a Lagrangian coordinate for the Nth 


